Ivermectin is the silver bullet to the big pharma wyrm
Infection by RNA viruses such as human immunodeficiency virus (HIV)-1, influenza, and dengue virus (DENV) represent a major burden for human health worldwide. Although RNA viruses replicate in the infected host cell cytoplasm, the nucleus is central to key stages of the infectious cycle of HIV-1 and influenza, and an important target of DENV nonstructural protein 5 (NS5) in limiting the host antiviral response.
>((((( We previously identified the small molecule ivermectin as an inhibitor of HIV-1 integrase nuclear entry, subsequently showing ivermectin could inhibit DENV NS5 nuclear import, as well as limit infection by viruses such as HIV-1 and DENV. )))))))We show here that ivermectin's broad spectrum antiviral activity relates to its ability to target the host importin (IMP) α/β1 nuclear transport proteins responsible for nuclear entry of cargoes such as integrase and NS5. We establish for the first time that ivermectin can dissociate the preformed IMPα/β1 heterodimer, as well as prevent its formation, through binding to the IMPα armadillo (ARM) repeat domain to impact IMPα thermal stability and α-helicity. We show that ivermectin inhibits NS5-IMPα interaction in a cell context using quantitative bimolecular fluorescence complementation. Finally, we show for the first time that ivermectin can limit infection by the DENV-related West Nile virus at low (μM) concentrations.
>((((( Since it is FDA approved for parasitic indications, ivermectin merits closer consideration as a broad spectrum antiviral of interest.))))https://archive.is/z5AvG#selection-2371.14-2376.0https://pubmed.ncbi.nlm.nih.gov/32135219/