Quoted By:
Biologic Systems Conform to the General Laws of Thermodynamics
The first law of thermodynamics states that the total energy of a system, including its surroundings, remains constant. It implies that within the total system, energy is neither lost nor gained during any change. However, energy may be transferred from one part of the system to another, or may be transformed into another form of energy. In living systems, chemical energy may be transformed into heat or into electrical, radiant, or mechanical energy.
The second law of thermodynamics states that the total entropy of a system must increase if a process is to occur spontaneously. Entropy is the extent of disorder or randomness of the system and becomes maximum as equilibrium is approached. Under conditions of constant temperature
and pressure, the relationship between the free-energy change (ΔG) of a reacting system and the change in entropy (ΔS) is expressed by the following equation, which combines the two laws of thermodynamics:
where ΔH is the change in enthalpy (heat) and T is the absolute temperature.
In biochemical reactions, since ΔH is approximately equal to the total change in internal energy of the reaction or ΔE, the above relationship may be expressed in the following way:
If ΔG is negative, the reaction proceeds spontaneously with loss of free energy, that is, it is exergonic. If, in addition, ΔG is of great magnitude, the reaction goes virtually to completion and is essentially irreversible. On the other hand, if ΔG is positive, the reaction proceeds only if free energy can be gained, that is, it is endergonic. If, in addition, the magnitude of ΔG is great, the system is stable, with little or no tendency for a reaction to occur. If ΔG is zero, the system is at equilibrium and no net change takes place.